摘要
本文主要介绍了利用python的 threading和queue库实现多线程编程,并封装为一个类,方便读者嵌入自己的业务逻辑。最后以机器学习的一个超参数选择为例进行演示。
多线程实现逻辑封装
实例化该类后,在.object_func函数中加入自己的业务逻辑,再调用.run方法即可。
# -*- coding: utf-8 -*- # @Time : 2021/2/4 14:36 # @Author : CyrusMay WJ # @FileName: run.py # @Software: PyCharm # @Blog :https://blog.csdn.net/Cyrus_May import queue import threading class CyrusThread(object): def __init__(self,num_thread = 10,logger=None): """ :param num_thread: 线程数 :param logger: 日志对象 """ self.num_thread = num_thread self.logger = logger def object_func(self,args_queue,max_q): while 1: try: arg = args_queue.get_nowait() step = args_queue.qsize() self.logger.info("progress:{}\{}".format(max_q,step)) except: self.logger.info("no more arg for args_queue!") break """ 此处加入自己的业务逻辑代码 """ def run(self,args): args_queue = queue.Queue() for value in args: args_queue.put(value) threads = [] for i in range(self.num_thread): threads.append(threading.Thread(target=self.object_func,args = args_queue)) for t in threads: t.start() for t in threads: t.join()
模型参数选择实例
# -*- coding: utf-8 -*- # @Time : 2021/2/4 14:36 # @Author : CyrusMay WJ # @FileName: run.py # @Software: PyCharm # @Blog :https://blog.csdn.net/Cyrus_May import queue import threading import numpy as np from sklearn.datasets import load_boston from sklearn.svm import SVR import logging import sys class CyrusThread(object): def __init__(self,num_thread = 10,logger=None): """ :param num_thread: 线程数 :param logger: 日志对象 """ self.num_thread = num_thread self.logger = logger def object_func(self,args_queue,max_q): while 1: try: arg = args_queue.get_nowait() step = args_queue.qsize() self.logger.info("progress:{}\{}".format(max_q,max_q-step)) except: self.logger.info("no more arg for args_queue!") break # 业务代码 C, epsilon, gamma = arg[0], arg[1], arg[2] svr_model = SVR(C=C, epsilon=epsilon, gamma=gamma) x, y = load_boston()["data"], load_boston()["target"] svr_model.fit(x, y) self.logger.info("score:{}".format(svr_model.score(x,y))) def run(self,args): args_queue = queue.Queue() max_q = 0 for value in args: args_queue.put(value) max_q += 1 threads = [] for i in range(self.num_thread): threads.append(threading.Thread(target=self.object_func,args = (args_queue,max_q))) for t in threads: t.start() for t in threads: t.join() # 创建日志对象 logger = logging.getLogger() logger.setLevel(logging.INFO) screen_handler = logging.StreamHandler(sys.stdout) screen_handler.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(module)s.%(funcName)s:%(lineno)d - %(levelname)s - %(message)s') screen_handler.setFormatter(formatter) logger.addHandler(screen_handler) # 创建需要调整参数的集合 args = [] for C in [i for i in np.arange(0.01,1,0.01)]: for epsilon in [i for i in np.arange(0.001,1,0.01)] + [i for i in range(1,10,1)]: for gamma in [i for i in np.arange(0.001,1,0.01)] + [i for i in range(1,10,1)]: args.append([C,epsilon,gamma]) # 创建多线程工具 threading_tool = CyrusThread(num_thread=20,logger=logger) threading_tool.run(args)
运行结果
2021-02-04 20:52:22,824 - run.object_func:31 - INFO - progress:1176219\1
2021-02-04 20:52:22,824 - run.object_func:31 - INFO - progress:1176219\2
2021-02-04 20:52:22,826 - run.object_func:31 - INFO - progress:1176219\3
2021-02-04 20:52:22,833 - run.object_func:31 - INFO - progress:1176219\4
2021-02-04 20:52:22,837 - run.object_func:31 - INFO - progress:1176219\5
2021-02-04 20:52:22,838 - run.object_func:31 - INFO - progress:1176219\6
2021-02-04 20:52:22,841 - run.object_func:31 - INFO - progress:1176219\7
2021-02-04 20:52:22,862 - run.object_func:31 - INFO - progress:1176219\8
2021-02-04 20:52:22,873 - run.object_func:31 - INFO - progress:1176219\9
2021-02-04 20:52:22,884 - run.object_func:31 - INFO - progress:1176219\10
2021-02-04 20:52:22,885 - run.object_func:31 - INFO - progress:1176219\11
2021-02-04 20:52:22,897 - run.object_func:31 - INFO - progress:1176219\12
2021-02-04 20:52:22,900 - run.object_func:31 - INFO - progress:1176219\13
2021-02-04 20:52:22,904 - run.object_func:31 - INFO - progress:1176219\14
2021-02-04 20:52:22,912 - run.object_func:31 - INFO - progress:1176219\15
2021-02-04 20:52:22,920 - run.object_func:31 - INFO - progress:1176219\16
2021-02-04 20:52:22,920 - run.object_func:39 - INFO - score:-0.01674283914287855
2021-02-04 20:52:22,929 - run.object_func:31 - INFO - progress:1176219\17
2021-02-04 20:52:22,932 - run.object_func:39 - INFO - score:-0.007992354170952565
2021-02-04 20:52:22,932 - run.object_func:31 - INFO - progress:1176219\18
2021-02-04 20:52:22,945 - run.object_func:31 - INFO - progress:1176219\19
2021-02-04 20:52:22,954 - run.object_func:31 - INFO - progress:1176219\20
2021-02-04 20:52:22,978 - run.object_func:31 - INFO - progress:1176219\21
2021-02-04 20:52:22,984 - run.object_func:39 - INFO - score:-0.018769934807246536
2021-02-04 20:52:22,985 - run.object_func:31 - INFO - progress:1176219\22
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。