相思资源网 Design By www.200059.com
在使用pytorch的时候,经常会涉及到两种数据格式tensor和ndarray之间的转换,这里总结一下两种格式的转换:
1. tensor cpu 和tensor gpu之间的转化:
tensor cpu 转为tensor gpu:
tensor_gpu = tensor_cpu.cuda()
> tensor_cpu = torch.ones((2,2)) tensor([[1., 1.], [1., 1.]]) > tensor_gpu = tensor_cpu.cuda() tensor([[1., 1.], [1., 1.]], device='cuda:0')
tensor gpu 转为tensor cpu:
tensor_cpu = tensor_gpu.cuda()
> tensor_gpu.cpu() tensor([[1., 1.], [1., 1.]])
2. tensor cpu 和 ndarray 之间的转化:
tensor cpu 转为 ndarray:
> np_array= tensor_cpu.numpy() array([[1., 1.], [1., 1.]], dtype=float32)
ndarray 转为 tensor cpu:
注:ndarray的默认精度为64位,Tensor的默认精度位32位,所以通过Tensor直接转换的话,精度会转换到32位,若通过from_numpy的方式,则会保留原来64位精度
> torch.from_numpy(np.ones((2,2))) tensor([[1., 1.], [1., 1.]], dtype=torch.float64) > torch.Tensor(np.ones((2,2))) tensor([[1., 1.], [1., 1.]])
3. tensor cpu 和 scalar 之间的转化:
如果只是训练了一个简单的分类网络,对单个样本的输出会是一个标量(scalar)
>torch.ones((1,1)).item() 1.0
通过一张图说明三者的转化方式:
相思资源网 Design By www.200059.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
相思资源网 Design By www.200059.com
暂无详解pytorch tensor和ndarray转换相关总结的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。