前言
由于机器学习的基本思想就是找到一个函数去拟合
样本数据分布,因此就涉及到了梯度
去求最小值
,在超平面我们又很难直接得到全局最优值,更没有通用性,因此我们就想办法让梯度沿着负方向下降,那么我们就能得到一个局部或全局的最优值了,因此导数就在机器学习中显得非常重要了
基本使用
tensor.backward()
可以及自动将梯度累加积到tensor.grad
上
x = torch.ones(3,3) print(x.requires_grad) x.requires_grad_(True) print(x.requires_grad) y = x**2/(x-2) out = y.mean() print(x.grad) out.backward() print(x.grad)
False
True
None
tensor([[-0.3333, -0.3333, -0.3333],
[-0.3333, -0.3333, -0.3333],
[-0.3333, -0.3333, -0.3333]])
requires_grad
可以获取到tensor
是否可导
requires_grad_()
可以设置tensor
是否可导
grad
查看当前tensor
导数
上面的公式很简单,程序含义
1/4 * (x**2) / (x-2)
求x的导数,基本公式在下方
注意点
我们使用.mean
后得到的是标量
,如果不是标量
会报错
x = torch.ones(3, requires_grad=True) y = x * 2 y = y * 2 print(y)
tensor([4., 4., 4.], grad_fn=<MulBackward0>)
y.backward() print(x.grad)
报错
RuntimeError: grad can be implicitly created only for scalar outputs
v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float) y.backward() print(x.grad)
tensor([4.0000e-01, 4.0000e+00, 4.0000e-04])
no_grad()
作用域
如果想要某部分程序不可导那么我们可以使用这个
x = torch.ones(3, requires_grad=True) y = x * 2 print(y.requires_grad) with torch.no_grad(): y = y * 2 print(y.requires_grad)
True
False
总结
这一章我们使用pytorch里面的backward
,自动实现了函数的求导,帮助我们在后面面对很多超大参数量的函数的时候,求导就变得游刃有余
上节
PyTorch使用教程-安装与基本使用
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。