相思资源网 Design By www.200059.com

最近做显著星检测用到了NLL损失函数

对于NLL函数,需要自己计算log和softmax的概率值,然后从才能作为输入

输入 [batch_size, channel , h, w]

Pytorch损失函数nn.NLLLoss2d()用法说明

目标 [batch_size, h, w]

输入的目标矩阵,每个像素必须是类型.举个例子。第一个像素是0,代表着类别属于输入的第1个通道;第二个像素是0,代表着类别属于输入的第0个通道,以此类推。

x = Variable(torch.Tensor([[[1, 2, 1],
       [2, 2, 1],
       [0, 1, 1]],
       [[0, 1, 3],
       [2, 3, 1],
       [0, 0, 1]]]))

x = x.view([1, 2, 3, 3])
print("x输入", x)

这里输入x,并改成[batch_size, channel , h, w]的格式。

soft = nn.Softmax(dim=1)

log_soft = nn.LogSoftmax(dim=1)

然后使用softmax函数计算每个类别的概率,这里dim=1表示从在1维度

上计算,也就是channel维度。logsoftmax是计算完softmax后在计算log值

Pytorch损失函数nn.NLLLoss2d()用法说明

手动计算举个栗子:第一个元素

Pytorch损失函数nn.NLLLoss2d()用法说明

y = Variable(torch.LongTensor([[1, 0, 1],
       [0, 0, 1],
       [1, 1, 1]]))

y = y.view([1, 3, 3])

输入label y,改变成[batch_size, h, w]格式

loss = nn.NLLLoss2d()
out = loss(x, y)
print(out)

输入函数,得到loss=0.7947

来手动计算

第一个label=1,则 loss=-1.3133

第二个label=0, 则loss=-0.3133

.
…
…
loss= -(-1.3133-0.3133-0.1269-0.6931-1.3133-0.6931-0.6931-1.3133-0.6931)/9 =0.7947222222222223

是一致的

注意:这个函数会对每个像素做平均,每个batch也会做平均,这里有9个像素,1个batch_size。

补充知识:PyTorch:NLLLoss2d

我就废话不多说了,大家还是直接看代码吧~

import torch
import torch.nn as nn
from torch import autograd
import torch.nn.functional as F
 
inputs_tensor = torch.FloatTensor([
[[2, 4],
 [1, 2]],
[[5, 3],
 [3, 0]],
[[5, 3],
 [5, 2]],
[[4, 2],
 [3, 2]],
 ])
inputs_tensor = torch.unsqueeze(inputs_tensor,0)
# inputs_tensor = torch.unsqueeze(inputs_tensor,1)
print '--input size(nBatch x nClasses x height x width): ', inputs_tensor.shape
 
targets_tensor = torch.LongTensor([
 [0, 2],
 [2, 3]
])
 
targets_tensor = torch.unsqueeze(targets_tensor,0)
print '--target size(nBatch x height x width): ', targets_tensor.shape
 
inputs_variable = autograd.Variable(inputs_tensor, requires_grad=True)
inputs_variable = F.log_softmax(inputs_variable)
targets_variable = autograd.Variable(targets_tensor)
 
loss = nn.NLLLoss2d()
output = loss(inputs_variable, targets_variable)
print '--NLLLoss2d: {}'.format(output)

以上这篇Pytorch损失函数nn.NLLLoss2d()用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Pytorch,损失函数,nn.NLLLoss2d

相思资源网 Design By www.200059.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
相思资源网 Design By www.200059.com

评论“Pytorch损失函数nn.NLLLoss2d()用法说明”

暂无Pytorch损失函数nn.NLLLoss2d()用法说明的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。