相思资源网 Design By www.200059.com
我就废话不多说了,大家还是直接看代码吧~
import torch import torch.nn as nn import torch.nn.functional as F class VGG16(nn.Module): def __init__(self): super(VGG16, self).__init__() # 3 * 224 * 224 self.conv1_1 = nn.Conv2d(3, 64, 3) # 64 * 222 * 222 self.conv1_2 = nn.Conv2d(64, 64, 3, padding=(1, 1)) # 64 * 222* 222 self.maxpool1 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 64 * 112 * 112 self.conv2_1 = nn.Conv2d(64, 128, 3) # 128 * 110 * 110 self.conv2_2 = nn.Conv2d(128, 128, 3, padding=(1, 1)) # 128 * 110 * 110 self.maxpool2 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 128 * 56 * 56 self.conv3_1 = nn.Conv2d(128, 256, 3) # 256 * 54 * 54 self.conv3_2 = nn.Conv2d(256, 256, 3, padding=(1, 1)) # 256 * 54 * 54 self.conv3_3 = nn.Conv2d(256, 256, 3, padding=(1, 1)) # 256 * 54 * 54 self.maxpool3 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 256 * 28 * 28 self.conv4_1 = nn.Conv2d(256, 512, 3) # 512 * 26 * 26 self.conv4_2 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 26 * 26 self.conv4_3 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 26 * 26 self.maxpool4 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 512 * 14 * 14 self.conv5_1 = nn.Conv2d(512, 512, 3) # 512 * 12 * 12 self.conv5_2 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 12 * 12 self.conv5_3 = nn.Conv2d(512, 512, 3, padding=(1, 1)) # 512 * 12 * 12 self.maxpool5 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 512 * 7 * 7 # view self.fc1 = nn.Linear(512 * 7 * 7, 4096) self.fc2 = nn.Linear(4096, 4096) self.fc3 = nn.Linear(4096, 1000) # softmax 1 * 1 * 1000 def forward(self, x): # x.size(0)即为batch_size in_size = x.size(0) out = self.conv1_1(x) # 222 out = F.relu(out) out = self.conv1_2(out) # 222 out = F.relu(out) out = self.maxpool1(out) # 112 out = self.conv2_1(out) # 110 out = F.relu(out) out = self.conv2_2(out) # 110 out = F.relu(out) out = self.maxpool2(out) # 56 out = self.conv3_1(out) # 54 out = F.relu(out) out = self.conv3_2(out) # 54 out = F.relu(out) out = self.conv3_3(out) # 54 out = F.relu(out) out = self.maxpool3(out) # 28 out = self.conv4_1(out) # 26 out = F.relu(out) out = self.conv4_2(out) # 26 out = F.relu(out) out = self.conv4_3(out) # 26 out = F.relu(out) out = self.maxpool4(out) # 14 out = self.conv5_1(out) # 12 out = F.relu(out) out = self.conv5_2(out) # 12 out = F.relu(out) out = self.conv5_3(out) # 12 out = F.relu(out) out = self.maxpool5(out) # 7 # 展平 out = out.view(in_size, -1) out = self.fc1(out) out = F.relu(out) out = self.fc2(out) out = F.relu(out) out = self.fc3(out) out = F.log_softmax(out, dim=1) return out
补充知识:Pytorch实现VGG(GPU版)
看代码吧~
import torch
from torch import nn
from torch import optim
from PIL import Image
import numpy as np
print(torch.cuda.is_available())
device = torch.device('cuda:0')
path="/content/drive/My Drive/Colab Notebooks/data/dog_vs_cat/"
train_X=np.empty((2000,224,224,3),dtype="float32")
train_Y=np.empty((2000,),dtype="int")
train_XX=np.empty((2000,3,224,224),dtype="float32")
for i in range(1000):
file_path=path+"cat."+str(i)+".jpg"
image=Image.open(file_path)
resized_image = image.resize((224, 224), Image.ANTIALIAS)
img=np.array(resized_image)
train_X[i,:,:,:]=img
train_Y[i]=0
for i in range(1000):
file_path=path+"dog."+str(i)+".jpg"
image = Image.open(file_path)
resized_image = image.resize((224, 224), Image.ANTIALIAS)
img = np.array(resized_image)
train_X[i+1000, :, :, :] = img
train_Y[i+1000] = 1
train_X /= 255
index = np.arange(2000)
np.random.shuffle(index)
train_X = train_X[index, :, :, :]
train_Y = train_Y[index]
for i in range(3):
train_XX[:,i,:,:]=train_X[:,:,:,i]
# 创建网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True),
nn.MaxPool2d(kernel_size=2,stride=2)
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3,stride=1,padding=1),
nn.ReLU(),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.BatchNorm2d(128,eps=1e-5,momentum=0.1,affine=True),
nn.MaxPool2d(kernel_size=2,stride=2)
)
self.conv3 = nn.Sequential(
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.BatchNorm2d(256,eps=1e-5, momentum=0.1, affine=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.conv4 = nn.Sequential(
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512, eps=1e-5, momentum=0.1, affine=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.conv5 = nn.Sequential(
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512, eps=1e-5, momentum=0.1, affine=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.dense1 = nn.Sequential(
nn.Linear(7*7*512,4096),
nn.ReLU(),
nn.Linear(4096,4096),
nn.ReLU(),
nn.Linear(4096,2)
)
def forward(self, x):
x=self.conv1(x)
x=self.conv2(x)
x=self.conv3(x)
x=self.conv4(x)
x=self.conv5(x)
x=x.view(-1,7*7*512)
x=self.dense1(x)
return x
batch_size=16
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0005)
train_loss = []
for epoch in range(10):
for i in range(2000//batch_size):
x=train_XX[i*batch_size:i*batch_size+batch_size]
y=train_Y[i*batch_size:i*batch_size+batch_size]
x = torch.from_numpy(x) #(batch_size,input_feature_shape)
y = torch.from_numpy(y) #(batch_size,label_onehot_shape)
x = x.cuda()
y = y.long().cuda()
out = net(x)
loss = criterion(out, y) # 计算两者的误差
optimizer.zero_grad() # 清空上一步的残余更新参数值
loss.backward() # 误差反向传播, 计算参数更新值
optimizer.step() # 将参数更新值施加到 net 的 parameters 上
train_loss.append(loss.item())
print(epoch, i*batch_size, np.mean(train_loss))
train_loss=[]
total_correct = 0
for i in range(2000):
x = train_XX[i].reshape(1,3,224,224)
y = train_Y[i]
x = torch.from_numpy(x)
x = x.cuda()
out = net(x).cpu()
out = out.detach().numpy()
pred=np.argmax(out)
if pred==y:
total_correct += 1
print(total_correct)
acc = total_correct / 2000.0
print('test acc:', acc)
torch.cuda.empty_cache()
将上面代码中batch_size改为32,训练次数改为100轮,得到如下准确率
过拟合了~
以上这篇利用PyTorch实现VGG16教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
PyTorch,VGG16
相思资源网 Design By www.200059.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
相思资源网 Design By www.200059.com
暂无利用PyTorch实现VGG16教程的评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
