一点见解,不断学习,欢迎指正
1、自定义loss层作为网络一层加进model,同时该loss的输出作为网络优化的目标函数
from keras.models import Model import keras.layers as KL import keras.backend as K import numpy as np from keras.utils.vis_utils import plot_model x_train=np.random.normal(1,1,(100,784)) x_in = KL.Input(shape=(784,)) x = x_in x = KL.Dense(100, activation='relu')(x) x = KL.Dense(784, activation='sigmoid')(x) def custom_loss1(y_true,y_pred): return K.mean(K.abs(y_true-y_pred)) loss1=KL.Lambda(lambda x:custom_loss1(*x),name='loss1')([x,x_in]) model = Model(x_in, [loss1]) model.get_layer('loss1').output#取出loss model.add_loss(loss1)#作为网络优化的目标函数 model.compile(optimizer='adam') plot_model(model,to_file='model.png',show_shapes=True) # model.fit(x_train, None, epochs=5)
2、自定义loss,作为网络优化的目标函数
x_in = KL.Input(shape=(784,)) x = x_in x = KL.Dense(100, activation='relu')(x) x = KL.Dense(784, activation='sigmoid')(x) model = Model(x_in, x) loss = K.mean((x - x_in)**2) model.add_loss(loss)#只是作为loss优化目标函数 model.compile(optimizer='adam') plot_model(model,to_file='model.png',show_shapes=True) model.fit(x_train, None, epochs=5)
补充知识:keras load_weights fine-tune
分享一个小技巧,就是在构建网络模型的时候,不要怕麻烦,给每一层都定义一个名字,这样在复用之前的参数权重的时候,除了官网给的先加载权重,再冻结权重之外,你可以通过简单的修改层的名字来达到加载之前训练的权重的目的,假设权重文件保存为model_pretrain.h5 ,重新使用的时候,我把想要复用的层的名字设置成一样的,然后
model.load_weights('model_pretrain.h5', by_name=True)
以上这篇keras 自定义loss model.add_loss的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。