pytorch中如何只让指定变量向后传播梯度?
(或者说如何让指定变量不参与后向传播?)
有以下公式,假如要让L对xvar求导:
(1)中,L对xvar的求导将同时计算out1部分和out2部分;
(2)中,L对xvar的求导只计算out2部分,因为out1的requires_grad=False;
(3)中,L对xvar的求导只计算out1部分,因为out2的requires_grad=False;
验证如下:
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed May 23 10:02:04 2018 @author: hy """ import torch from torch.autograd import Variable print("Pytorch version: {}".format(torch.__version__)) x=torch.Tensor([1]) xvar=Variable(x,requires_grad=True) y1=torch.Tensor([2]) y2=torch.Tensor([7]) y1var=Variable(y1) y2var=Variable(y2) #(1) print("For (1)") print("xvar requres_grad: {}".format(xvar.requires_grad)) print("y1var requres_grad: {}".format(y1var.requires_grad)) print("y2var requres_grad: {}".format(y2var.requires_grad)) out1 = xvar*y1var print("out1 requres_grad: {}".format(out1.requires_grad)) out2 = xvar*y2var print("out2 requres_grad: {}".format(out2.requires_grad)) L=torch.pow(out1-out2,2) L.backward() print("xvar.grad: {}".format(xvar.grad)) xvar.grad.data.zero_() #(2) print("For (2)") print("xvar requres_grad: {}".format(xvar.requires_grad)) print("y1var requres_grad: {}".format(y1var.requires_grad)) print("y2var requres_grad: {}".format(y2var.requires_grad)) out1 = xvar*y1var print("out1 requres_grad: {}".format(out1.requires_grad)) out2 = xvar*y2var print("out2 requres_grad: {}".format(out2.requires_grad)) out1 = out1.detach() print("after out1.detach(), out1 requres_grad: {}".format(out1.requires_grad)) L=torch.pow(out1-out2,2) L.backward() print("xvar.grad: {}".format(xvar.grad)) xvar.grad.data.zero_() #(3) print("For (3)") print("xvar requres_grad: {}".format(xvar.requires_grad)) print("y1var requres_grad: {}".format(y1var.requires_grad)) print("y2var requres_grad: {}".format(y2var.requires_grad)) out1 = xvar*y1var print("out1 requres_grad: {}".format(out1.requires_grad)) out2 = xvar*y2var print("out2 requres_grad: {}".format(out2.requires_grad)) #out1 = out1.detach() out2 = out2.detach() print("after out2.detach(), out2 requres_grad: {}".format(out1.requires_grad)) L=torch.pow(out1-out2,2) L.backward() print("xvar.grad: {}".format(xvar.grad)) xvar.grad.data.zero_()
pytorch中,将变量的requires_grad设为False,即可让变量不参与梯度的后向传播;
但是不能直接将out1.requires_grad=False;
其实,Variable类型提供了detach()方法,所返回变量的requires_grad为False。
注意:如果out1和out2的requires_grad都为False的话,那么xvar.grad就出错了,因为梯度没有传到xvar
补充:
volatile=True表示这个变量不计算梯度, 参考:Volatile is recommended for purely inference mode, when you're sure you won't be even calling .backward(). It's more efficient than any other autograd setting - it will use the absolute minimal amount of memory to evaluate the model. volatile also determines that requires_grad is False.
以上这篇在pytorch中实现只让指定变量向后传播梯度就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。