今天我们将利用python+OpenCV实现对视频中物体数量的监控,达到视频监控的效果,比如洗煤厂的监控水龙头的水柱颜色,当水柱为黑色的超过了一半,那么将说明过滤网发生了故障。当然不仅如此,我们看的是图像视频处理的技巧,你也可以将项目迁移到其他地方等,这仅仅是一个例子而已。我们知道计算机视觉中关于图像识别有四大类任务:
。
分类-Classification:解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。
定位-Location:解决“在哪里?”的问题,即定位出这个目标的的位置。
检测-Detection:解决“是什么?在哪里?”的问题,即定位出这个目标的的位置并且知道目标物是什么。
分割-Segmentation:分为实例的分割(Instance-level)和场景分割(Scene-level),解决“每一个像素属于哪个目标物或场景”的问题。
而定位不仅需要找到物体的位置在哪里,还需要能够统计目标的数目以及物体状态。
除了图像分类以外,目标检验要解决问题的架构难题是:
1.目标有可能经常出现在影像的任何方位;
2.目标有各种有所不同的尺寸;
3.目标有可能有各种有所不同的外形。
如果用矩形框来界定目的,则长方形有有所不同的清晰度。由于目的的清晰度有所不同,因此使用经典之作的转动视窗+影像图形的计划解决问题标准化目的检验难题的生产成本太低。近几年来,目标检测算法取得了很大的突破。比较流行的算法可以分为两类,一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN等),它们是two-stage的,需要先算法产生目标候选框,也就是目标位置,然后再对候选框做分类与回归。而另一类是Yolo,SSD这类one-stage算法,其仅仅使用一个卷积神经网络CNN直接预测不同目标的类别与位置。第一类方法是准确度高一些,但是速度慢,但是第二类算法是速度快,但是准确性要低一些。那么今天我们的项目并不会太多的讲解各种算法,而是我们的核心主题,目标数量识别。
那么我们将如何进行实现呢
多说无益,下面可以开始实现我们的项目。
首先导入相关的库
import cv2 from PIL import Image from PIL import ImageDraw,ImageFont import numpy as np
接着我们需要把水龙头流出水柱的部分提取出来,即需要把图片预先处理成这样,作为背景图来用,名为3ji.jpg如图所示:
"text-align: center">"htmlcode">
'''3ji是背景图不可换,调试换另一个图片,3ji自己用画图找到水的位置清除掉水柱即可,所以说摄像头不能动''' firstframe=cv2.imread("3ji.jpg") firstframe= cv2.cvtColor(firstframe, cv2.COLOR_BGR2GRAY) firstframe= cv2.GaussianBlur(firstframe, (21, 21), 0) secondframe0=cv2.imread("2.jpg") secondframe0= cv2.cvtColor(secondframe0, cv2.COLOR_BGR2GRAY) secondframe= cv2.GaussianBlur(secondframe0, (21, 21), 0) frameDelta = cv2.absdiff(firstframe, secondframe) x,y=frameDelta.shape print(x,y)
接着通过边缘检测找到水柱边界,方便查看。
#frameDelta和canny一个是区域一个是轮廓 img = cv2.GaussianBlur(frameDelta,(3,3),0) canny = cv2.Canny(img, 0, 100)
定义水柱总面积变量。清水面积变量,ss数组存储像素值位置
area=0 #6687,总面积 qingarea=0 ss=[]
然后画出轮廓,并记录水柱处像素值得位置
#画轮廓,存储要识别的像素值位置,记录在ss数组中 for i in range(x): for j in range(y): if any(frameDelta[i,j]!=[0,0,0]):#白色的时候,占位 ss.append([i,j])
然后以原图加轮廓图显示,图片相加即可:
canny0=cv2.add(secondframe0,canny)
接着根据像素值大小判断颜色,通过调试这个项目的阈值是50
#判断水柱颜色,清水占多少像素 for t in ss: k,l=t area=area+1 if canny0[k, l] > 50: print(canny0[k,l]) qingarea+=1 接着统计黑色水柱占比率为多少 deta=(qingarea/area)*100 print(qingarea) pred="清水占比为"+str(deta)+"%" print(pred)
最后输出图像结果:
cv2.imwrite("pred.jpg",canny0) canny0=cv2.imread("pred.jpg") img_PIL = Image.fromarray(cv2.cvtColor(canny0, cv2.COLOR_BGR2RGB)) myfont = ImageFont.truetype(r'C:/Windows/Fonts/simfang.ttf', 40) draw = ImageDraw.Draw(img_PIL) draw.text((200, 10), pred, font=myfont, fill=(255,23,140)) img_OpenCV = cv2.cvtColor(np.asarray(img_PIL), cv2.COLOR_RGB2BGR) cv2.imshow("frame", img_OpenCV) key = cv2.waitKey(0)
最终达到的演示效果如图所示:
清水占比96%,还是比较准确的
"text-align: center">"color: #ff0000">总结
以上所述是小编给大家介绍的通过 Python 和 OpenCV 实现目标数量监控,希望对大家有所帮助!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?