相思资源网 Design By www.200059.com
1.torch.expand
函数返回张量在某一个维度扩展之后的张量,就是将张量广播到新形状。函数对返回的张量不会分配新内存,即在原始张量上返回只读视图,返回的张量内存是不连续的。类似于numpy中的broadcast_to函数的作用。如果希望张量内存连续,可以调用contiguous函数。
例子:
import torch x = torch.tensor([1, 2, 3, 4]) xnew = x.expand(2, 4) print(xnew)
输出:
tensor([[1, 2, 3, 4],
[1, 2, 3, 4]])
2.torch.repeat
torch.repeat用法类似np.tile,就是将原矩阵横向、纵向地复制。与torch.expand不同的是torch.repeat返回的张量在内存中是连续的。
例子1:
将张量横向的复制
import torch x = torch.tensor([1, 2, 3]) xnew = x.repeat(1,3) print(xnew)
输出:
tensor([[1, 2, 3, 1, 2, 3, 1, 2, 3]])
例子2:
将张量纵向的复制
import torch x = torch.tensor([1, 2, 3]) xnew = x.repeat(3,1) print(xnew)
输出:
tensor([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
相思资源网 Design By www.200059.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
相思资源网 Design By www.200059.com
暂无pytorch torch.expand和torch.repeat的区别详解的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。