相思资源网 Design By www.200059.com
numpy.random.shuffle
在做将caffe模型和预训练的参数转化为tensorflow的模型和预训练的参数,以便微调,遇到如下函数:
def gen_data(source): while True: indices = range(len(source.images)) # indices = the number of images in the source data set random.shuffle(indices) for i in indices: image = np.reshape(source.images[i], (28, 28, 1)) label = source.labels[i] yield image, label
之前卑鄙陋寡闻,不知道这个用法,按照字面上的意思是打乱,那么这里就应该是让训练数据集中的数据打乱顺序,然后一个挨着一个地(for i in indices)生成训练数据对。下面就从docs.scipy.org中查到的random.shuffle的用法:
numpy.random.shuffle(x)
Modify a sequence in-place by shuffling its contents.
x : array_like
The array or list to be shuffled.
None
举例
python> > arr = np.arange(10) > np.random.shuffle(arr) > arr [1 7 5 2 9 4 3 6 0 8]
This function only shuffles the array along the first index of a multi-dimensional array(多维矩阵中,只对第一维(行)做打乱顺序操作):
python> > arr = np.arange(9).reshape((3, 3)) > np.random.shuffle(arr) > arr array([[3, 4, 5], [6, 7, 8], [0, 1, 2]])This function only shuffles the array along the first index of a multi-dimensional array:
参考:
[1] https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.shuffle.html#numpy-random-shuffle
[2] https://github.com/ethereon/caffe-tensorflow/blob/master/examples/mnist/finetune_mnist.py
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
相思资源网 Design By www.200059.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
相思资源网 Design By www.200059.com
暂无numpy.random.shuffle打乱顺序函数的实现的评论...