相思资源网 Design By www.200059.com

H2O中的随机森林算法介绍及其项目实战(python实现)

包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator

H2ORandomForestEstimator 的常用方法和参数介绍:

(一)建模方法:

model =H2ORandomForestEstimator(ntrees=n,max_depth =m)

model.train(x=random_pv.names,y='Catrgory',training_frame=trainData)

通过trainData来构建随机森林模型,model.train中的trainData:训练集,x:预测变量名称,y:预测 响应变量的名称

(二)预测方法:

pre_tag=H2ORandomForestEstimator.predict(model ,test_data) 利用训练好的模型来对测试集进行预测,其中的model:训练好的模型, test_data:测试集。

(三)算法参数说明:

(1)ntrees:构建模型时要生成的树的棵树。

(2)max_depth :每棵树的最大深度。

项目要求:

题目一: 利用train.csv中的数据,通过H2O框架中的随机森林算法构建分类模型,然后利用模型对 test.csv中的数据进行预测,并计算分类的准确度进而评价模型的分类效果;通过调节参 数,观察分类准确度的变化情况。 注:准确度=预测正确的数占样本数的比例

题目二: 通过H2o Flow 的随机森林算法,用同题目一中所用同样的训练数据和参数,构建模型; 参看模型中特征的重要性程度,从中选取前8个特征,再去训练模型,并重新预测结果, 进而计算分类的准确度。

需求完成内容:2个题目的代码,认为最好的准确度的输出值和test数据与预测结果合并 后的数据集,命名为predict.csv

python实现代码如下:

(1) 题目一:

#手动进行调节参数得到最好的准确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division 
df=h2o.import_file('train.csv')
trainData=df[2:]
 
model=H2ORandomForestEstimator(ntrees=6,max_depth =16)
model.train(x=trainData.names,y='Catrgory',training_frame=trainData)
df2=h2o.import_file('test.csv')
test_data=df2[2:]
pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
predict=df2.concat(pre_tag)
dfnew=predict[predict['Catrgory']==predict['predict']]
Precision=dfnew.nrow/predict.nrow
 
print(Precision)
h2o.download_csv(predict,'predict.csv')

运行结果最好为87.0833%-6-16,如下

python实现H2O中的随机森林算法介绍及其项目实战

#for循环进行调节参数得到最好的准确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division 
df=h2o.import_file('train.csv')
trainData=df[2:]
df2=h2o.import_file('test.csv')
test_data=df2[2:]
Precision=0
nt=0
md=0
for i in range(1,50):
    for j in range(1,50):
      model=H2ORandomForestEstimator(ntrees=i,max_depth =j)
      model.train(x=trainData.names,y='Catrgory',training_frame=trainData)
      pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
      predict=df2.concat(pre_tag)
      dfnew=predict[predict['Catrgory']==predict['predict']]
      p=dfnew.nrow/predict.nrow
      if Precision<p:
        Precision=p
        nt=i
        md=j
 
print(Precision)
print(i)
print(j)
h2o.download_csv(predict,'predict.csv')

运行结果最好为87.5%-49-49,如下

python实现H2O中的随机森林算法介绍及其项目实战

(2)题目二:建模如下,之后挑出排名前8的特征进行再次建模

python实现H2O中的随机森林算法介绍及其项目实战

#手动调节参数得到最大准确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division 
df=h2o.import_file('train.csv')
trainData=df[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']]
df2=h2o.import_file('test.csv')
test_data=df2[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']]
 
model=H2ORandomForestEstimator(ntrees=5,max_depth =18)
model.train(x=trainData.names,y='Catrgory',training_frame=trainData)
 
pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
predict=df2.concat(pre_tag)
dfnew=predict[predict['Catrgory']==predict['predict']]
Precision=dfnew.nrow/predict.nrow
 
print(Precision)
h2o.download_csv(predict,'predict.csv')

运行结果最好为87.5%-5-18,如下

python实现H2O中的随机森林算法介绍及其项目实战

#for循环调节参数得到最大正确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division 
df=h2o.import_file('train.csv')
trainData=df[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']]
df2=h2o.import_file('test.csv')
test_data=df2[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']]
Precision=0
nt=0
md=0
for i in range(1,50):
    for j in range(1,50):
      model=H2ORandomForestEstimator(ntrees=i,max_depth =j)
      model.train(x=trainData.names,y='Catrgory',training_frame=trainData)
      pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
      predict=df2.concat(pre_tag)
      dfnew=predict[predict['Catrgory']==predict['predict']]
      p=dfnew.nrow/predict.nrow
      if Precision<p:
        Precision=p
        nt=i
        md=j
 
print(Precision)
print(i)
print(j)
h2o.download_csv(predict,'predict.csv')

运行结果最好为87.5%-49-49,如下 

python实现H2O中的随机森林算法介绍及其项目实战

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,H2O,随机森林算法,python,随机森林算法

相思资源网 Design By www.200059.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
相思资源网 Design By www.200059.com

评论“python实现H2O中的随机森林算法介绍及其项目实战”

暂无python实现H2O中的随机森林算法介绍及其项目实战的评论...

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。