相思资源网 Design By www.200059.com

简而言之就是,nn.Sequential类似于Keras中的贯序模型,它是Module的子类,在构建数个网络层之后会自动调用forward()方法,从而有网络模型生成。而nn.ModuleList仅仅类似于pytho中的list类型,只是将一系列层装入列表,并没有实现forward()方法,因此也不会有网络模型产生的副作用。

需要注意的是,nn.ModuleList接受的必须是subModule类型,例如:

nn.ModuleList(
      [nn.ModuleList([Conv(inp_dim + j * increase, oup_dim, 1, relu=False, bn=False) for j in range(5)]) for i in
       range(nstack)])

其中,二次嵌套的list内部也必须额外使用一个nn.ModuleList修饰实例化,否则会无法识别类型而报错!

摘录自

nn.ModuleList is just like a Python list. It was designed to store any desired number of nn.Module's. It may be useful, for instance, if you want to design a neural network whose number of layers is passed as input:

class LinearNet(nn.Module):
 def __init__(self, input_size, num_layers, layers_size, output_size):
   super(LinearNet, self).__init__()
 
   self.linears = nn.ModuleList([nn.Linear(input_size, layers_size)])
   self.linears.extend([nn.Linear(layers_size, layers_size) for i in range(1, self.num_layers-1)])
   self.linears.append(nn.Linear(layers_size, output_size)

nn.Sequential allows you to build a neural net by specifying sequentially the building blocks (nn.Module's) of that net. Here's an example:

class Flatten(nn.Module):
 def forward(self, x):
  N, C, H, W = x.size() # read in N, C, H, W
  return x.view(N, -1)
 
simple_cnn = nn.Sequential(
      nn.Conv2d(3, 32, kernel_size=7, stride=2),
      nn.ReLU(inplace=True),
      Flatten(), 
      nn.Linear(5408, 10),
     )

In nn.Sequential, the nn.Module's stored inside are connected in a cascaded way. For instance, in the example that I gave, I define a neural network that receives as input an image with 3 channels and outputs 10 neurons. That network is composed by the following blocks, in the following order: Conv2D -> ReLU -> Linear layer. Moreover, an object of type nn.Sequential has a forward() method, so if I have an input image x I can directly call y = simple_cnn(x) to obtain the scores for x. When you define an nn.Sequential you must be careful to make sure that the output size of a block matches the input size of the following block. Basically, it behaves just like a nn.Module

On the other hand, nn.ModuleList does not have a forward() method, because it does not define any neural network, that is, there is no connection between each of the nn.Module's that it stores. You may use it to store nn.Module's, just like you use Python lists to store other types of objects (integers, strings, etc). The advantage of using nn.ModuleList's instead of using conventional Python lists to store nn.Module's is that Pytorch is “aware” of the existence of the nn.Module's inside an nn.ModuleList, which is not the case for Python lists. If you want to understand exactly what I mean, just try to redefine my class LinearNet using a Python list instead of a nn.ModuleList and train it. When defining the optimizer() for that net, you'll get an error saying that your model has no parameters, because PyTorch does not see the parameters of the layers stored in a Python list. If you use a nn.ModuleList instead, you'll get no error.

以上这篇对Pytorch中nn.ModuleList 和 nn.Sequential详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Pytorch,nn.ModuleList,nn.Sequential

相思资源网 Design By www.200059.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
相思资源网 Design By www.200059.com

评论“对Pytorch中nn.ModuleList 和 nn.Sequential详解”

暂无对Pytorch中nn.ModuleList 和 nn.Sequential详解的评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?