相思资源网 Design By www.200059.com
pd.DataFrame中通常含有许多特征,有时候需要对每个含有缺失值的列,都用均值进行填充,代码实现可以这样:
for column in list(df.columns[df.isnull().sum() > 0]): mean_val = df[column].mean() df[column].fillna(mean_val, inplace=True) # -------代码分解------- # 判断哪些列有缺失值,得到series对象 df.isnull().sum() > 0 # output contributors True coordinates True created_at False display_text_range False entities False extended_entities True favorite_count False favorited False full_text False geo True id False id_str False ... # 根据上一步结果,筛选需要填充的列 df.columns[df.isnull().sum() > 0] # output Index(['contributors', 'coordinates', 'extended_entities', 'geo', 'in_reply_to_screen_name', 'in_reply_to_status_id', 'in_reply_to_status_id_str', 'in_reply_to_user_id', 'in_reply_to_user_id_str', 'place', 'possibly_sensitive', 'possibly_sensitive_appealable', 'quoted_status', 'quoted_status_id', 'quoted_status_id_str', 'retweeted_status'], dtype='object')
以上这篇pandas 使用均值填充缺失值列的小技巧分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
pandas,均值,填充,缺失值
相思资源网 Design By www.200059.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
相思资源网 Design By www.200059.com
暂无pandas 使用均值填充缺失值列的小技巧分享的评论...