前言
简单学习过网络爬虫,只是之前都是照着书上做并发,大概能理解,却还是无法自己用到自己项目中,这里自己研究实现一个网页嗅探HTML5播放控件中基于m3u8协议ts格式视频资源的项目,并未考虑过复杂情况,毕竟只是练练手.
源码
# coding=utf-8 import asyncio import multiprocessing import os import re import time from math import floor from multiprocessing import Manager import aiohttp import requests from lxml import html import threading from src.my_lib import retry from src.my_lib import time_statistics class M3U8Download: _path = "./resource\\" # 本地文件路径 _url_seed = None # 资源所在链接前缀 _target_url = {} # 资源任务目标字典 _mode = "" _headers = {"User-agent": "Mozilla/5.0"} # 浏览器代理 _target_num = 100 def __init__(self): self._ml = Manager().list() # 进程通信列表 if not os.path.exists(self._path): # 检测本地目录存在否 os.makedirs(self._path) exec_str = r'chcp 65001' os.system(exec_str) # 先切换utf-8输出,防止控制台乱码 def sniffing(self, url): self._url = url print("开始嗅探...") try: r = requests.get(self._url) # 访问嗅探网址,获取网页信息 except: print("嗅探失败,网址不正确") os.system("pause") else: tree = html.fromstring(r.content) try: source_url = tree.xpath('//video//source/@src')[0] # 嗅探资源控制文件链接,这里只针对一个资源控制文件 # self._url_seed = re.split("/\w+\.m3u8", source_url)[0] # 从资源控制文件链接解析域名 except: print("嗅探失败,未发现资源") os.system("pause") else: self.analysis(source_url) def analysis(self, source_url): try: self._url_seed = re.split("/\w+\.m3u8", source_url)[0] # 从资源控制文件链接解析域名 with requests.get(source_url) as r: # 访问资源控制文件,获得资源信息 src = re.split("\n*#.+\n", r.text) # 解析资源信息 for sub_src in src: # 将资源地址储存到任务字典 if sub_src: self._target_url[sub_src] = self._url_seed + "/" + sub_src except Exception as e: print("资源无法成功解析", e) os.system("pause") else: self._target_num = len(self._target_url) print("sniffing success!!!,found", self._target_num, "url.") self._mode = input( "1:-> 单进程(Low B)\n2:-> 多进程+多线程(网速开始biubiu飞起!)\n3:-> 多进程+协程(最先进的并发!!!)\n") if self._mode == "1": for path, url in self._target_url.items(): self._download(path, url) elif self._mode == "2" or self._mode == "3": self._multiprocessing() def _multiprocessing(self, processing_num=4): # 多进程,多线程 target_list = {} # 进程任务字典,储存每个进程分配的任务 pool = multiprocessing.Pool(processes=processing_num) # 开启进程池 i = 0 # 任务分配标识 for path, url in self._target_url.items(): # 分配进程任务 target_list[path] = url i += 1 if i % 10 == 0 or i == len(self._target_url): # 每个进程分配十个任务 if self._mode == "2": pool.apply_async(self._sub_multithreading, kwds=target_list) # 使用多线程驱动方法 else: pool.apply_async(self._sub_coroutine, kwds=target_list) # 使用协程驱动方法 target_list = {} pool.close() # join函数等待所有子进程结束 pool.join() # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool while True: if self._judge_over(): self._combine() break def _sub_multithreading(self, **kwargs): for path, url in kwargs.items(): # 根据进程任务开启线程 t = threading.Thread(target=self._download, args=(path, url,)) t.start() @retry() def _download(self, path, url): # 同步下载方法 with requests.get(url, headers=self._headers) as r: if r.status_code == 200: with open(self._path + path, "wb")as file: file.write(r.content) self._ml.append(0) # 每成功一个就往进程通信列表增加一个值 percent = '%.2f' % (len(self._ml) / self._target_num * 100) print(len(self._ml), ": ", path, "->OK", "\tcomplete:", percent, "%") # 显示下载进度 else: print(path, r.status_code, r.reason) def _sub_coroutine(self, **kwargs): tasks = [] for path, url in kwargs.items(): # 根据进程任务创建协程任务列表 tasks.append(asyncio.ensure_future(self._async_download(path, url))) loop = asyncio.get_event_loop() # 创建异步事件循环 loop.run_until_complete(asyncio.wait(tasks)) # 注册任务列表 async def _async_download(self, path, url): # 异步下载方法 async with aiohttp.ClientSession() as session: async with session.get(url, headers=self._headers) as resp: try: assert resp.status == 200, "E" # 断言状态码为200,否则抛异常,触发重试装饰器 with open(self._path + path, "wb")as file: file.write(await resp.read()) except Exception as e: print(e) else: self._ml.append(0) # 每成功一个就往进程通信列表增加一个值 percent = '%.2f' % (len(self._ml) / self._target_num * 100) print(len(self._ml), ": ", path, "->OK", "\tcomplete:", percent, "%") # 显示下载进度 def _combine(self): # 组合资源方法 try: print("开始组合资源...") identification = str(floor(time.time())) exec_str = r'copy /b "' + self._path + r'*.ts" "' + self._path + 'video' + identification + '.mp4"' os.system(exec_str) # 使用cmd命令将资源整合 exec_str = r'del "' + self._path + r'*.ts"' os.system(exec_str) # 删除原来的文件 except: print("资源组合失败") else: print("资源组合成功!") def _judge_over(self): # 判断是否全部下载完成 if len(self._ml) == len(self._target_url): return True return False @time_statistics def app(): multiprocessing.freeze_support() url = input("输入嗅探网址:\n") m3u8 = M3U8Download() m3u8.sniffing(url) # m3u8.analysis(url) if __name__ == "__main__": app()
这里是两个装饰器的实现:
import time def time_statistics(fun): def function_timer(*args, **kwargs): t0 = time.time() result = fun(*args, **kwargs) t1 = time.time() print("Total time running %s: %s seconds" % (fun.__name__, str(t1 - t0))) return result return function_timer def retry(retries=3): def _retry(fun): def wrapper(*args, **kwargs): for _ in range(retries): try: return fun(*args, **kwargs) except Exception as e: print("@", fun.__name__, "->", e) return wrapper return _retry
打包成exe文件
使用PyInstaller -F download.py将程序打包成单个可执行文件.
这里需要注意一下,因为程序含有多进程,需要在执行前加一句multiprocessing.freeze_support(),不然程序会反复执行多进程前的功能.
关于协程
协程在Python3.5进化到了async await版本,用 async 标记异步方法,在异步方法里对耗时操作使用await标记.这里使用了一个进程驱动协程的方法,在进程池创建多个协程任务,使用asyncio.get_event_loop()创建协程事件循环,使用run_until_complete()注册协程任务,asyncio.wait()方法接收一个任务列表进行协程注册.
关于装饰器
装饰器源于闭包原理,这里使用了两种装饰器.
- @time_statistics:统计耗时,装饰器自己无参型
- @retry():设置重试次数,装饰器自己有参型
- 按我理解是有参型是将无参型装饰器包含在内部,而调用是加()的,关于():
- 不带括号时,调用的是这个函数本身
- 带括号(此时必须传入需要的参数),调用的是函数的return结果
关于CMD控制台
程序会使用CMD命令来将下载的ts文件合并.
因为CMD默认使用GB2312编码,调用os.system()需要先切换成通用的UTF-8输出,否则系统信息会乱码.
而且使用cmd命令时参数最好加双引号,以避免特殊符号报错.
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。