有一道Python面试题, 以下代码有什么局限性,要如何修改
def strTest(num): s = 'Hello' for i in range(num): s += 'x' return s
上面的代码其实可以看出:由于变量str是不变对象,每次遍历,Python都会生成新的str对象来存储新的字符串,所以num越大,创建的str对象就越多,内存消耗约大,速度越慢,性能越差。 如果要改变上面的问题,可以变字符串拼接为join联合的方式,代码如下:
def strTest2(num): s = 'Hello' l = list(s) for i in range(num): l.append('x') return ''.join(l)
下面两种不同处理方式,运行速度的比较:
> def strTest1(num): ... s = 'Hello' ... for i in range(num): ... s += 'x' ... return s > def strTest2(num): ... s = 'Hello' ... l = list(s) ... for i in range(num): ... l.append(s) ... return ''.join(l) > > from timeit import timeit # 运行10万级别数据,运行速度比对 > timeit("strTest1(100000)", setup="from __main__ import strTest1", number=1) 0.016680980406363233 > timeit("strTest2(100000)", setup="from __main__ import strTest2", number=1) 0.009688869110618725 # 运行100万级别数据,运行速度比对 > timeit("strTest1(1000000)", setup="from __main__ import strTest1", number=1) 0.14558920607187195 > timeit("strTest2(1000000)", setup="from __main__ import strTest2", number=1) 0.1335057276853462 # 运行1000万级别数据,运行速度比对 > timeit("strTest1(10000000)", setup="from __main__ import strTest1", number=1) 5.9497953107860475 > timeit("strTest2(10000000)", setup="from __main__ import strTest2", number=1) 1.3268972136649921 # 运行2000万级别数据,运行速度比对 > timeit("strTest1(20000000)", setup="from __main__ import strTest1", number=1) 21.661270140499056 > timeit("strTest2(20000000)", setup="from __main__ import strTest2", number=1) 2.6981786518920217 # 运行3000万级别数据,运行速度比对 > timeit("strTest1(30000000)", setup="from __main__ import strTest1", number=1) 49.858089123966295 > timeit("strTest2(30000000)", setup="from __main__ import strTest2", number=1) 4.285787770209481 # 运行4000万级别数据,运行速度比对 > timeit("strTest1(40000000)", setup="from __main__ import strTest1", number=1) 86.67876273457563 > timeit("strTest2(40000000)", setup="from __main__ import strTest2", number=1) 5.328653452047092 # 运行5000万级别数据,运行速度比对 > timeit("strTest1(50000000)", setup="from __main__ import strTest1", number=1) 130.59138063819023 > timeit("strTest2(50000000)", setup="from __main__ import strTest2", number=1) 6.8375931077291625 # 运行6000万级别数据,运行速度比对 > timeit("strTest1(60000000)", setup="from __main__ import strTest1", number=1) 188.28227241975003 > timeit("strTest2(60000000)", setup="from __main__ import strTest2", number=1) 8.080144489401846 # 运行7000万级别数据,运行速度比对 > timeit("strTest1(70000000)", setup="from __main__ import strTest1", number=1) 256.54383904350277 > timeit("strTest2(70000000)", setup="from __main__ import strTest2", number=1) 9.387400816458012 # 运行8000万级别数据,运行速度比对 > timeit("strTest1(80000000)", setup="from __main__ import strTest1", number=1) 333.7185806572388 > timeit("strTest2(80000000)", setup="from __main__ import strTest2", number=1) 10.946627677462857
从上面的比对数据可以看出,当数据比较小的时候,两者差别不大,当数据越大,两者性能差距就越大。从而可以看出,字符串拼接的方式一旦碰到大数据处理的时候,性能是非常慢的。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。