前言:前两天准备用 Python 在 Spark 上处理量几十G的数据,熟料在利用PyCharm进行PySpark远程调试时掉入深坑,特写此博文以帮助同样深处坑中的bigdata&machine learning fans早日出坑。
Version :Spark 1.5.0、Python 2.7.14
1. 远程Spark集群环境
首先Spark集群要配置好且能正常启动,版本号可以在Spark对应版本的官方网站查到,注意:Spark 1.5.0作为一个比较古老的版本,不支持Python 3.6+;另外Spark集群的每个节点的Python版本必须保持一致。这里只讲如何加入pyspark远程调试所需要修改的部分。在$SPARK_HOME/conf/spark-env.sh中添加一行:
export PYSPARK_PYTHON=/home/hadoop/anaconda2/bin/python2
这里的Python路径是集群上Python版本的路径,我这里是用的anaconda安装的Python2,所以路路径如上。正常启动Spark集群后,在命令行输入pyspark后回车,能正确进入到pyspark shell。
2. 本地PyCharm配置
首先将Spark集群的spark-1.5.0部署包拷贝到本地机器,并在/etc/hosts(Linux类机器)或C:\Windows\System32….\hosts(Windows机器)中加入Spark集群Master节点的IP与主机名的映射;本地正确安装Spark集群同版本Python;
安装py4j
添加spark-1.5.0/python目录
新建一个Python文件Simple,编辑Edit Configurations添加SPARK_HOME变量
写一个类似下面的简单测试程序
# -*- encoding: UTF-8 -*- # @auther:Mars # @datetime:2018-03-01 from pyspark import SparkContext sc = SparkContext("spark://master:7077","Simple APP") logData = sc.textFile("hdfs://master:9000/README.md").cache() numAs = logData.filter(lambda s: 'a' in s).count() numBs = logData.filter(lambda s: 'b' in s).count() print("Lines with a: %i, lines with b: %i"%(numAs, numBs)) sc.stop()
运行可以得到看到下图,就OK了~
切记,1)本地与Spark集群的版本要一致;2)程序中不要用IP地址(不信可以试试,如果你用IP地址不报错,请告知我~谢谢)
以上这篇PyCharm+PySpark远程调试的环境配置的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。