在处理数据时,经常需要对数据分组计算均值或者计数,在Microsoft Excel中,可以通过透视表轻易实现简单的分组运算。而对于更加复杂的分组运算,Python中pandas包可以帮助我们实现。
1 数据
首先引入几个重要的包:
import pandas as pd import numpy as np from pandas import DataFrame,Series
通过代码构造数据集:
data=DataFrame({'key1':['a','b','c','a','c','a','b','a','c','a','b','c'],'key2':['one','two','three','two','one','one','three','one','two','three','one','two'],'num1':np.random.rand(12),'num2':np.random.randn(12)})
得到数据集如下:
data key1 key2 num1 num2 0 a one 0.268705 0.084091 1 b two 0.876707 0.217794 2 c three 0.229999 0.574402 3 a two 0.707990 -1.444415 4 c one 0.786064 0.343244 5 a one 0.587273 1.212391 6 b three 0.927396 1.505372 7 a one 0.295271 -0.497633 8 c two 0.292721 0.098814 9 a three 0.369788 -1.157426
2 交叉表—分类计数
按照不同类进行计数统计是最常见透视功能,可以通
(1)crosstab
#函数: crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)
crosstab的index和columns是必须要指定复制的参数:
pd.crosstab(data.key1,data.key2)
结果如下:
key2 one three two key1 a 3 1 1 b 0 1 1 c 1 1 1
想要在边框处增加汇总项可以指定margin的值为True:
pd.crosstab(data.key1,data.key2,margins=True)
结果:
key2 one three two All key1 a 3 1 1 5 b 1 1 1 3 c 1 1 2 4 All 5 3 4 12
(2)pivot_table
函数:
pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')
使用pivot_table函数同样可以实现,运算函数默认值aggfunc='mean',指定为aggfunc='count'即可:
data.pivot_table('num1',index='key1',columns='key2',aggfunc='count')
结果相同:
key2 one three two key1 a 3 1 1 b 1 1 1 c 1 1 2
(3)groupby
通过groupby相对来说会更加复杂,首先需要对data按照key1和key2进行聚类,然后进行count运算,再将key2的index重塑为columns:
data.groupby(['key1','key2'])['num1'].count().unstack()
结果:
key2 one three two key1 a 3 1 1 b 1 1 1 c 1 1 2
3 其它透视表运算
(1)pivot_table
pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')
要进行何种运算,只需要指定aggfunc即可。
默认计算均值:
data.pivot_table(index='key1',columns='key2')
out:
num1 num2 key2 one three two one three two key1 a 0.193332 0.705657 0.203155 -0.165749 2.398164 -1.293595 b 0.167947 0.204545 0.661460 0.555850 -0.522528 0.143530 c 0.496993 0.033673 0.206028 -0.115093 0.024650 0.077726
分类汇总呢并求和:
data.pivot_table(index='key1',columns='key2',aggfunc='sum')
结果:
num1 num2 key2 one three two one three two key1 a 0.579996 0.705657 0.203155 -0.497246 2.398164 -1.293595 b 0.167947 0.204545 0.661460 0.555850 -0.522528 0.143530 c 0.496993 0.033673 0.412055 -0.115093 0.024650 0.155452
也可以使用其它自定义函数:
#定义一个最大值减最小值的函数 def max_min (group): return group.max()-group.min()
data.pivot_table(index='key1',columns='key2',aggfunc=max_min)
结果:
num1 num2 key2 one three two one three two key1 a 0.179266 0.0 0.000 3.109405 0.0 0.000000 b 0.000000 0.0 0.000 0.000000 0.0 0.000000 c 0.000000 0.0 0.177 0.000000 0.0 1.609466
(2)通过groupby
普通的函数如mean,sum可以直接应用:
data.groupby(['key1','key2']).mean().unstack()
返回结果:
num1 num2 key2 one three two one three two key1 a 0.193332 0.705657 0.203155 -0.165749 2.398164 -1.293595 b 0.167947 0.204545 0.661460 0.555850 -0.522528 0.143530 c 0.496993 0.033673 0.206028 -0.115093 0.024650 0.077726
以上这篇用Python实现数据的透视表的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
Python,数据,透视表
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。