今天打算通过绘制正弦和余弦函数,从默认的设置开始,一步一步地调整改进,让它变得好看,变成我们初高中学习过的图象那样。通过这个过程来学习如何进行对图表的一些元素的进行调整。
01. 简单绘图
matplotlib有一套允许定制各种属性的默认设置。你可以几乎控制matplotlib中的每一个默认属性:图像大小,每英寸点数,线宽,色彩和样式,子图(axes),坐标轴和网格属性,文字和字体属性,等等。
安装
pip install matplotlib
虽然matplotlib的默认设置在大多数情况下相当好,你却可能想要在一些特别的情形下更改一些属性。
from pylab import * x = np.linspace(-np.pi, np.pi, 256,endpoint=True) C,S = np.cos(x), np.sin(x) plot(x,C) plot(x,S) show()
show image
02. 设置基本元素
这边的基本元素主要有几下几点:
线的颜色,粗细,和线型 刻度和标签 还有图例
代码比较简单,基本上在我的第一讲内容里都讲过了。
import numpy as np from matplotlib import pyplot as plt plt.figure(figsize=(10,6), dpi=80) x = np.linspace(-np.pi, np.pi, 256,endpoint=True) C,S = np.cos(x), np.sin(x) # 设置线的颜色,粗细,和线型 plt.plot(x, C, color="blue", linewidth=2.5, linestyle="-", label=r'$sin(x)$') plt.plot(x, S, color="red", linewidth=2.5, linestyle="-", label=r'$cos(x)$') # 如果觉得线条离边界太近了,可以加大距离 plt.xlim(x.min()*1.2, x.max()*1.2) plt.ylim(C.min()*1.2, C.max()*1.2) # 当前的刻度并不清晰,需要重新设定,并加上更直观的标签 plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$']) plt.yticks([-1,0,1], [r'$-1$', r'$0$', r'$1$']) # 添加图例 plt.legend() plt.show()
show image
03. 移动轴线
还记得我们在初高中学习的三角函数图象,可不是这样,它应该是有四个象限的。而这里却是一个四四方方的图表。
所以接下来,我们要做的就是移动轴线,让它变成我们熟悉的样子。
我们只需要两轴线(x和y轴),所以我们需要将顶部和右边的轴线给隐藏起来(颜色设置为None即可)。
# plt.gca(),全称是get current axis ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') # 由于我们移动的是左边和底部的轴,所以不用设置这两个也可以 ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') # 指定data类型,就是移动到指定数值 ax.spines['bottom'].set_position(('data',0)) ax.spines['left'].set_position(('data',0))
关于 set_position()
这个函数中的data是啥意思?我查了下官网。解释如下
然后最后发现,上面的写法可以用一定更简洁的方式设置,是等价的。
ax.spines['bottom'].set_position('zero') ax.spines['left'].set_position('zero')
show image
04. 添加注释
现在的图形部分已经成型,接下让我们现在使用annotate命令注解一些我们感兴趣的点。
我们选择 2π/3
作为我们想要注解的正弦和余弦值。我们将在曲线上做一个标记和一个垂直的虚线。然后,使用annotate命令来显示一个箭头和一些文本。
t = 2*np.pi/3 # 利用plt.plot绘制向下的一条垂直的线,利用plt.scatter绘制一个点。 plt.plot([t,t],[0,np.cos(t)], color ='blue', linewidth=2.5, linestyle="--") plt.scatter([t,],[np.cos(t),], 50, color ='blue') plt.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$', xy=(t, np.sin(t)), xycoords='data', xytext=(+10, +30), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) # 利用plt.plot绘制向上的一条垂直的线,利用plt.scatter绘制一个点。 plt.plot([t,t],[0,np.sin(t)], color ='red', linewidth=2.5, linestyle="--") plt.scatter([t,],[np.sin(t),], 50, color ='red') plt.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$', xy=(t, np.cos(t)), xycoords='data', xytext=(-90, -50), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
在这里,你可能会对 plt.annotate
这个函数的用法,有所陌生。这里也解释一下。
第一个参数,就是注释内容; 第二个参数, xy
,就是对哪一点进行注释; 第三个参数, xycoords
,指定类型,data 是说基于数值来定位; 第四个参数, xytext
,是注释的位置,结合第五个参数,就是根据偏移量来决定注释位置; 第五个参数, textcoords
,值为offset points,就是说是相对位置; 第六个参数, fontsize
,注释大小; 第七个参数, arrowprops
,对箭头的类型的一些设置。
show image
05. 完整代码
以上都是对片段代码进行解释,这里放出完整的代码
import numpy as np from matplotlib import pyplot as plt plt.figure(figsize=(10,6), dpi=80) x = np.linspace(-np.pi, np.pi, 256,endpoint=True) C,S = np.cos(x), np.sin(x) # 设置线的颜色,粗细,和线型 plt.plot(x, C, color="blue", linewidth=2.5, linestyle="-", label=r'$sin(x)$') plt.plot(x, S, color="red", linewidth=2.5, linestyle="-", label=r'$cos(x)$') # 如果觉得线条离边界太近了,可以加大距离 plt.xlim(x.min()*1.2, x.max()*1.2) plt.ylim(C.min()*1.2, C.max()*1.2) # 当前的刻度并不清晰,需要重新设定,并加上更直观的标签 plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$']) plt.yticks([-1,1], [r'$-1$', r'$1$']) # 添加图例 plt.legend(loc='upper left') # plt.gca(),全称是get current axis ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') # 由于我们移动的是左边和底部的轴,所以不用设置这两个也可以 ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') # 指定data类型,就是移动到指定数值 # ax.spines['bottom'].set_position('zero') ax.spines['bottom'].set_position(('data',0)) ax.spines['left'].set_position(('data',0)) t = 2*np.pi/3 # 利用plt.plot绘制向下的一条垂直的线,利用plt.scatter绘制一个点。 plt.plot([t,t],[0,np.cos(t)], color ='blue', linewidth=2.5, linestyle="--") plt.scatter([t,],[np.cos(t),], 50, color ='blue') plt.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$', xy=(t, np.sin(t)), xycoords='data', xytext=(+10, +30), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) # 利用plt.plot绘制向上的一条垂直的线,利用plt.scatter绘制一个点。 plt.plot([t,t],[0,np.sin(t)], color ='red', linewidth=2.5, linestyle="--") plt.scatter([t,],[np.sin(t),], 50, color ='red') plt.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$', xy=(t, np.cos(t)), xycoords='data', xytext=(-90, -50), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.show()
绘制抛物线:
X1=np.linspace(-4,4,100,endpoint=True) plt.plot(X1,(X1**2)/9)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。