MNIST数据集比较小,一般入门机器学习都会采用这个数据集来训练
下载地址:yann.lecun.com/exdb/mnist/
有4个有用的文件:
train-images-idx3-ubyte: training set images
train-labels-idx1-ubyte: training set labels
t10k-images-idx3-ubyte: test set images
t10k-labels-idx1-ubyte: test set labels
The training set contains 60000 examples, and the test set 10000 examples. 数据集存储是用binary file存储的,黑白图片。
下面给出load数据集的代码:
import os
import struct
import numpy as np
import matplotlib.pyplot as plt
def load_mnist():
'''
Load mnist data
http://yann.lecun.com/exdb/mnist/
60000 training examples
10000 test sets
Arguments:
kind: 'train' or 'test', string charater input with a default value 'train'
Return:
xxx_images: n*m array, n is the sample count, m is the feature number which is 28*28
xxx_labels: class labels for each image, (0-9)
'''
root_path = '/home/cc/deep_learning/data_sets/mnist'
train_labels_path = os.path.join(root_path, 'train-labels.idx1-ubyte')
train_images_path = os.path.join(root_path, 'train-images.idx3-ubyte')
test_labels_path = os.path.join(root_path, 't10k-labels.idx1-ubyte')
test_images_path = os.path.join(root_path, 't10k-images.idx3-ubyte')
with open(train_labels_path, 'rb') as lpath:
# '>' denotes bigedian
# 'I' denotes unsigned char
magic, n = struct.unpack('>II', lpath.read(8))
#loaded = np.fromfile(lpath, dtype = np.uint8)
train_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)
with open(train_images_path, 'rb') as ipath:
magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))
loaded = np.fromfile(train_images_path, dtype = np.uint8)
# images start from the 16th bytes
train_images = loaded[16:].reshape(len(train_labels), 784).astype(np.float)
with open(test_labels_path, 'rb') as lpath:
# '>' denotes bigedian
# 'I' denotes unsigned char
magic, n = struct.unpack('>II', lpath.read(8))
#loaded = np.fromfile(lpath, dtype = np.uint8)
test_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)
with open(test_images_path, 'rb') as ipath:
magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))
loaded = np.fromfile(test_images_path, dtype = np.uint8)
# images start from the 16th bytes
test_images = loaded[16:].reshape(len(test_labels), 784)
return train_images, train_labels, test_images, test_labels
再看看图片集是什么样的:
def test_mnist_data():
'''
Just to check the data
Argument:
none
Return:
none
'''
train_images, train_labels, test_images, test_labels = load_mnist()
fig, ax = plt.subplots(nrows = 2, ncols = 5, sharex = True, sharey = True)
ax =ax.flatten()
for i in range(10):
img = train_images[i][:].reshape(28, 28)
ax[i].imshow(img, cmap = 'Greys', interpolation = 'nearest')
print('corresponding labels = %d' %train_labels[i])
if __name__ == '__main__':
test_mnist_data()
跑出的结果如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
python,MNIST手写识别
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
