相思资源网 Design By www.200059.com
场景如下:
现在有一个dataframe,其中一列为score,值从0-100,
df:
score
98
88
37
68
86
33
现在需要增加一列level,给这些分数分类,90分以上为A,60-90为B,60以下为C。
常用的方法肯定是使用for循环,对每一行进行处理。
import pandas as pd list = [98,88,37,68,86,33] df = pd.DataFrame(list, columns=['score']) # convert list to dataframe df['level'] = '' # add a column def judgeLevel(df): for i in range(len(df)): if df.score.ix[i] < 60: df.level.ix[i] = 'C' elif df.score.ix[i] > 90: df.level.ix[i] = 'A' else: df.level.ix[i] = 'B' return df df = judgeLevel(df)
还有一种方法,是使用python的匿名函数:lambda函数
import pandas as pd list = [98,88,37,68,86,33] df = pd.DataFrame(list, columns=['score']) df['level'] = '' # add a column def judgeLevel(df): if df['score'] < 60: return 'C' elif df['score'] > 90: return 'A' else: return 'B' df['level'] = df.apply(lambda r: judgeLevel(r), axis=1)
至于如何取舍,就由各位自行决定了,多学一点总不是坏处,对吧?
以上这篇python 用lambda函数替换for循环的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
相思资源网 Design By www.200059.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
相思资源网 Design By www.200059.com
暂无python 用lambda函数替换for循环的方法的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。