相思资源网 Design By www.200059.com

概要

本文只是简单的介绍动态规划递归、非递归算法实现

案例一

题目一:求数组非相邻最大和

[题目描述]

在一个数组arr中,找出一组不相邻的数字,使得最后的和最大。

[示例输入]

arr=1 2 4 1 7 8 3

[示例输出]
15

from functools import wraps
def memoDeco(func):
  '''
  memoDeco主要是缓存已遍历的节点,减少递归内存开销
  '''
  cashe={}
  @wraps(func)
  def wrapper(*args):
    if args not in cashe:
      cashe[args]=func(*args)
    return cashe[args]
  
  return wrapper

@memoDeco
def recMaxArray(array,index):
  if index==0:
    return array[0]
  elif index==1:
    return max(array[0],array[1])
  else:
    return max(recMaxArray(array,index-2)+array[index],recMaxArray(array,index-1))
  
if __name__=="__main__":
  array=(1,2,4,1,7,8,3)
  print(recMaxArray(array,len(array)-1))

非递归实现

def dpMaxArray(array):
  '''
  代码讲解详见引用一:正月点灯笼讲解
  '''
  lens=len(array)
  maxArray=[0]*(lens)
  maxArray[0]=array[0]
  maxArray[1]=max(array[0],array[1])
  for i in range(2,lens):
    maxArray[i]=max(maxArray[i-2]+array[i],maxArray[i-1])
  return maxArray[-1]

  
if __name__=="__main__":
  array=(1,2,4,1,7,8,3)
  print(dpMaxArray(array))

案例二

[题目描述]

给定一个正整数s, 判断一个数组arr中,是否有一组数字加起来等于s。

[示例输入]

arr=3 34 4 12 5 3

s=9

[实例输出]

true

递归实现

from functools import wraps

#和第一题一样,套用装饰器可以做一个缓存节点作用
def memoDeco(func):
  '''
  memoDeco主要是缓存已遍历的节点,减少递归内存开销
  '''
  cashe = {}
  
  @wraps(func)
  def wrapper(*args):
    if args not in cashe:
      cashe[args] = func(*args)
    return cashe[args]
  
  return wrapper


@memoDeco
def recSubSet(arr, index, tar_num):
  if index == 0:
    return arr[0] == tar_num
  elif tar_num == 0:
    return True
  elif arr[index] > tar_num:
    return recSubSet(arr, index - 1, tar_num)
  else:
    return recSubSet(arr, index - 1, tar_num) or recSubSet(arr, index - 1, tar_num - index)


if __name__ == "__main__":
  arr = (3, 34, 4, 12, 5, 3)
  tar_num = 13
  index = len(arr) - 1
  print(recSubSet(arr, index, tar_num))

非递归实现

'''
多维数组构建用python第三方库numpy比较方便
代码讲解详见引用一:正月点灯笼讲解
'''
import numpy as np


def dpSubSet(arr, tar_num):
  subSet = np.zeros((len(arr), tar_num + 1), dtype=bool)
  subSet[:, 0] = True
  subSet[0, :] = False
  subSet[0, arr[0]] = True
  for i in range(1, len(arr)):
    for j in range(1, tar_num + 1):
      if arr[i] > j:
        subSet[i, j] = subSet[i - 1, j]
      else:
        subSet[i, j] = subSet[i - 1, j] or subSet[i - 1, j - arr[i]]
  return subSet[-1, -1]


if __name__ == "__main__":
  arr = (3, 34, 4, 12, 5, 3)
  tar_num = 13
  print(dpSubSet(arr, tar_num))

标签:
python,递归,非递归

相思资源网 Design By www.200059.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
相思资源网 Design By www.200059.com

评论“分析python动态规划的递归、非递归实现”

暂无分析python动态规划的递归、非递归实现的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。