前言
这篇文章一个多月前以英文发表在我的个人博客,现在抽空翻译成中文,并补充一些没来得及写的内容。
昨天我发表的《如何在 JS 代码中消灭 for 循环》引起很多争议。为了避免没营养的讨论,我先声明一下。递归性能差是没争议的事实,如果你觉得 for 循环更好,没必要学递归,那看到这里你可以不用看了。这篇文章要展示的大部分代码,仅仅是学习目的,我不推荐在生产环境中用。但是如果你对函数式编程感兴趣,想深入理解一些核心概念,你应该读下去。
今年年初我开始学 Haskell 的时候,我被函数式代码的优雅和简洁俘获了。代码居然还能这样写!用指令式代码要写一堆的程序,用递归几行就解决了。这篇文章里,我会把我在 Haskell 里面看到的递归函数翻译成 JS 和 Python,并尽量每一步解释。最后我会尝试解决递归爆栈(Stack Overflow)的问题。
递归基础
我从 Python 代码开始,然后展示 JS 实现。
很多解释递归的教程是从解释斐波那契数列开始的,我觉得这样做是在用一个已经复杂的概念去解释另一个复杂的概念,没有必要。我们还是从简单的代码开始吧。
运行这段 Python 代码:
def foo(): foo() foo()
当然会报错。"htmlcode">
def foo(n): if n <= 1: return foo(n-1) foo(10)
这段代码基本什么都没做,但是这次它不会报错了。我在 foo 函数定义初始就告诉它什么时候该停,然后我每次调用的时候都把参数改一下,直到参数满足判断条件,函数停止执行。
如果你理解了上面两段代码,你已经理解递归了。
从上面的代码我总结一下递归的核心构成:
- 递归函数必须接受参数。
- 在递归函数的定义初始,应该有一个判断条件,当参数满足这个条件的时候,函数停止执行,并返回值。
- 每次递归函数执行自己的时候,都需要把当前参数做某种修改,然后传入下一次递归。当参数被累积修改到符合初始判断条件了,递归就停止了。
现在我们来用 Python 写个 max 函数,找出列表中的最大值。是的,我知道 Python 原生有 max 函数,我重新发明个轮子只是为了学习和好玩。
# 不要用这个函数,还是用原生的 max 吧。 def max2(list): if len(list) == 1: return list[0] head, tail = list[0], list[1:] return head if head > max2(tail) else max2(tail) print max2([3,98,345]) # 345
max2函数接受一个列表作为参数,如果列表长度为 1,函数停止执行并把列表第一个元素返回出去。注意,当递归停止时,它必须返回值。(但是如果你想用递归去执行副作用,而不是纯计算的话,可以不返回值。)如果初始判断条件不满足,把列表的头和尾取出来。接着,我们比较头部元素和尾部列表中最大值的大小(我们先不管尾部列表中最大值是哪个),并把比较结果中更大的那个值返回出去。那我们怎样知道尾部列表中的最大值?答案是我们不用知道。我们已经在 max2 函数中定义了比较两个值,并把大的值返回出去这个行为了。我们只需要把这同一个行为作用于尾部列表,程序会帮我们找到。
下面是 JS 的实现:
const max = xs => { if (xs.length === 1) return xs[0]; const [head, ...tail] = xs; return head > max(tail) "htmlcode"># Python 内置有 reverse 函数 def reverse2(list): if len(list) == 1: return list head, tail = list[0], list[1:] return reverse2(tail) + [x] print reverse2([1,2,3,4,5,6]) # [6,5,4,3,2,1]JS 版:
const reverse = xs => { if (xs.length === 1) return xs; const [head, ...tail] = xs; return reverse(tail).concat(head); };map
Python 版:
# Python 内置有 map 函数 def map2(f, list): if len(list) == 0: return [] head, tail = list[0], list[1:] return [f(head)] + map2(f, tail) print map2(lambda x : x + 1, [2,2,2,2]) # [3,3,3,3]JS 版:
const map = f => xs => { if (xs.length === 0) return []; const [head, ...tail] = xs; return [f(head), ...map(f)(tail)]; };zipWith
zipWith 接受一个回调函数和两个列表为参数。他会并行遍历两个列表,并把单遍历到的元素一一对应,传进回调函数,把每一步遍历的计算结果存在新的列表里,最终返回这个心列表。
Python 版:
def zipWith(f, listA, listB): if len(listA) == 0 or len(listB) == 0: return [] headA, tailA = listA[0], listA[1:] headB, tailB = listB[0], listB[1:] return [f(headA, headB)] + zipWith(f, tailA, tailB) print zipWith(lambda x, y : x + y, [2,2,2,2], [3,3,3,3,3]) # [5,5,5,5] # 结果列表长度由参数中两个列表更短的那个决定JS 版:
const zipWith = f => xs => ys => { if (xs.length === 0 || ys.length === 0) return []; const [headX, ...tailX] = xs; const [headY, ...tailY] = ys; return [f(headX)(headY), ...zipWith(f)(tailX)(tailY)]; };replicate
Python 版:
def replicate(n,x): if n <= 0: return [] return [x] + replicate(n-1,x) print replicate(4, 'hello') # ['hello', 'hello', 'hello', 'hello']JS 版:
const replicate = (n, x) => { if (n <= 0) return []; return [x, ...replicate(n - 1, x)]; };reduce
Python 不鼓励用 reduce,我就不写了。
JS 版:
const reduce = (f, acc, arr) => { if (arr.length === 0) return acc; const [head, ...tail] = arr; return reduce(f, f(head, acc), tail); };quickSort
用递归来实现排序算法肯定不是最优的,但是如果处理数据量小的话,也不是不能用。
Python 版:
def quickSort(xs): if len(xs) <= 1: return xs pivot, rest = xs[0], xs[1:] smaller, bigger = [], [] for x in rest: smaller.append(x) if x < pivot else bigger.append(x) return quickSort(smaller) + [pivot] + quickSort(bigger) print quickSort([44,14,65,34]) # [14, 34, 44, 65]JS 版:
const quickSort = list => { if (list.length === 0) return list; const [pivot, ...rest] = list; const smaller = []; const bigger = []; rest.forEach(x => x < pivot "color: #ff0000">解决递归爆栈问题
由于我对 Python 还不是特别熟,这个问题只讲 JS 场景了,抱歉。
每次递归时,JS 引擎都会生成新的 frame 分配给当前执行函数,当递归层次太深时,可能会栈不够用,导致爆栈。ES6引入了尾部优化(TCO),即当递归处于尾部调用时,JS 引擎会把每次递归的函数放在同一个 frame 里面,不新增 frame,这样就解决了爆栈问题。
然而,V8 引擎在短暂支持 TCO 之后,放弃支持了。那为了避免爆栈,我们只能在程序层面解决问题了。 为了解决这个问题,大神们发明出了 trampoline 这个函数。来看代码:
const trampoline = fn => (...args) => { let result = fn(...args); while (typeof result === "function") { result = result(); } return result; };给trampoline传个递归函数,它会把递归函数的每次递归计算结果保存下来,然后只要递归没结束,它就不停执行每次递归返回的函数。这样做相当于把多次的函数调用放到一次函数调用里了,不会新增 frame,当然也不会爆栈。
先别高兴太早。仔细看 trampoline 函数的话,你会发现它也要求传入的递归函数符合尾部调用的情况。那不符合尾部调用的递归函数怎么办呢?( 比如我刚刚写的 JS 版 quickSort,最后 return 的结果里,把两个递归调用放在了一个结果里。这种情况叫 binary recursion,暂译二元递归,翻译错了勿怪 )
这个问题我也纠结了很久了,然后直接去 Stack Overflow 问了,然后真有大神回答了。要解决把二元递归转换成尾部调用,需要用到一种叫 Continuous Passing Style (CPS) 的技巧。来看怎么把 quickSort 转成尾部调用:
const identity = x => x; const quickSort = (list, cont = identity) => { if (list.length === 0) return cont(list); const [pivot, ...rest] = list; const smaller = []; const bigger = []; rest.forEach(x => (x < pivot "_blank" href="http://递归函数">这章内容。我不能保证比他讲的更清楚,就不讲了。
屠龙之技
虽然我将要讲的这个概念在 JS 中根本都用不到,但是我觉得很好玩,就加进来了。有些编程语言是不支持递归的(我本科不是学的计算机,不知道是哪些语言),那这时候如果我知道用递归可以解决某个问题,该怎么办?用 Y-combinator.
JS 实现:
function y(le) { return (function(f) { return f(f); })(function(f) { return le(function(x) { return f(f)(x); }); }); } const factorial = y(function(fac) { return function(n) { return n <= 2 "color: #ff0000">总结以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。
标签:递归算法,递归,递归函数
相思资源网 Design By www.200059.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com