cuda上tensor的定义
a = torch.ones(1000,1000,3).cuda()
某一gpu上定义
cuda1 = torch.device('cuda:1')
b = torch.randn((1000,1000,1000),device=cuda1)
删除某一变量
del a
在cpu定义tensor然后转到gpu
torch.zeros().cuda()
直接在gpu上定义,这样就减少了cpu的损耗
torch.cuda.FloatTensor(batch_size, self.hidden_dim, self.height, self.width).fill_(0)
补充知识:pytorch cuda.FloatTensor->FloatTensor
错误类型:
RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor)
定义残差块时定义在model的外面,在使用gpu进行训练的时候,残差块的参数是torch.FloatTensor类型,
虽然使用了model.cuda(),但是只对model里面的参数在gpu部分,所以把残差块对应的操作都在model的__init__(),
重新定义,即可解决问题
以上这篇pytorch cuda上tensor的定义 以及减少cpu的操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。